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This document is a supplemental appendix to Campbell, Pflueger, and Viceira
(2018). The contents of this appendix are as follows:

1. Section A provides additional empirical results in support of the assumed link
between consumption and the output gap.

2. Section B derives the log-linear expansion for habit around the steady-state.

3. Section C provides details for the model solution for both macroeconomic dy-
namics and asset pricing moments.

4. Section D describes in detail the implementation of the numerical model solu-
tion.

5. Section E provides details for the econometric methodology. Among other de-
tails, it describes how we estimate orthogonalized macroeconomic impulse re-
sponses. It also describes the regressions of model stock and bond returns onto
estimated VAR(1) innovations shown in Table 7, Panel A in the main paper.

A Additional empirical results

Figure A.1 shows that equation (1) in the main paper is a strikingly close description of
consumption and output gap data. We regress stochastically detrended consumption
onto the output gap:

ĉt = b0 + bxxt + εt. (A.1)

We set the smoothing parameter to φ = 0.93 (half-life 2.4 years) to maximize the
correlation between ĉt and the output gap. Figure A.1 shows that ĉt and its fitted
value from (A.1) track each other remarkably closely through different macroeconomic
regimes, with a correlation of 77%. The estimated slope coefficient bx is statistically
indistinguishable from one.

To test whether the functional form of equation (1) in the main paper is actually
a good description of the data, we add inflation and the nominal Federal Funds rate
as additional controls to (A.1). We find that neither of these variables enter in a
statistically or economically significant manner.

Specifically, our regression results are as follows. “Fitted (Output)” is the fitted
value from the quarterly regression ĉt = 11.73

(0.27)
+ 0.88

(0.17)
xt + εt; “Fitted (Output, Infla-

tion)” is the fitted value from the quarterly regression ĉt = 11.72
(0.45)

+0.88
(0.17)

xt+0.00
(0.12)

πt+εt;

“Fitted (Output, Fed Funds)” is the fitted value from the quarterly regression ĉt =
11.16
(0.54

+ 0.86
(0.14)

xt + 0.09
(0.08)

it + εt. Newey-West standard errors with four lags are shown in

parentheses and all regressions are for the full sample 1979Q3-2011Q4.
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Figure A.1: Stochastically Detrended Consumption vs. Output Gap
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This figure plots the time series of stochastically exponentially detrended consumption ĉt = ct−(1−
φ)[ct−1 + φct−2 + ...]. The smoothing parameter φ = 0.93, corresponding to a half-life of 2.4 years,
is chosen to maximize the univariate correlation between the log real output gap and exponentially
detrended consumption. “Fitted(Output)” is the fitted value from the quarterly regression ĉt =
11.73
(0.27)

+ 0.88
(0.17)

xt + εt; “Fitted(Output, Inflation)” is the fitted value from the quarterly regression

ĉt = 11.72
(0.45)

+ 0.88
(0.17)

xt+ 0.00
(0.12)

πt+εt; “Fitted(Output, Fed Funds)” is the fitted value from the quarterly

regression ĉt = 11.16
(0.54

+ 0.86
(0.14)

xt + 0.09
(0.08)

it + εt. All regressions use the full sample 1979Q3-2011Q4 and

show Newey-West standard errors with four lags in parentheses. Data for consumption, the output
gap, inflation, and the Federal Funds rate are the same as in Table 2.

B Loglinear habit dynamics around steady state

This section derives the loglinear dynamics of the habit stock around the steady-
state and compares them to CC. We start by showing that a loglinear approximation
around the nonstochastic steady-state allows us to express log habit dynamics as a
linear function in ct, ct−1, ....

Approximating

ŝt =

(
1− 1

S̄

)
(ht − ct − h) , (B.1)
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we get loglinear approximate dynamics for log habit ht (ignoring constants):

ht+1 ≈ θ0ht + (1− θ0)ct +
θ1

(1− 1
S̄

)
xt +

θ2

(1− 1
S̄

)
xt−1, (B.2)

= (1− θ0)
∞∑
j=0

θj0ct−j −
θ1

( 1
S̄
− 1)

(
ct − (1− φ)

∞∑
j=1

φjct−j

)
(B.3)

− θ2

( 1
S̄
− 1)

(
ct−1 − (1− φ)

∞∑
j=1

φjct−1−j

)
. (B.4)

When θ1 = θ2 = 0 (the CC case), expression (B.4) shows that log habit is approxi-
mately an exponentially-weighted moving average of lagged log consumption. As θ1

and θ2 increase, a0 and a1 decrease while the weight on longer lags increases. Positive
values for θ1 and θ1, as in our calibration, therefore increase the dependence of habit
on the most recent lags of consumption relative to CC. If φ < θ0, as in our calibra-
tion, aj/

(
(1− θ0)θj0

)
→ 1 as j → ∞. Intuitively, log habit loads onto long lags of

consumption exactly as in CC.

C Details: Model solution

C.1 Solving for macroeconomic dynamics

C.1.1 Writing the problem in matrix form

For the numerical solution, it is convenient to first write the problem in matrix form
and orthogonalize the shocks. Recall that the standard deviations and correlations of
the model shocks in equations (15)-(17) in the main paper are denoted by σπ, σi, σ∗
and ρπi, ρπ∗, ρi∗. We define a vector of orthogonal shocks ut = [u2t, u3t, u∗t]

′ such that
u∗t = v∗t and such that ut spans the vector of model shocks vt = [vπt, vit, v∗t]

′.

We define the orthogonal shocks ut via:

vt = Mtemput, (C.1)

where the invertible transformation matrix Mtemp is given by:

Mtemp =

 1 0 ρπ∗σπ
σ∗

σi(ρπi−ρπ∗ρi∗)
σπ(1−ρ2

π∗)
1 σiρi∗

σ∗

0 0 1

 (C.2)

We denote the variance-covariance matrix of the orthogonalized shocks ut by Σu.
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We can solve for it in terms of the model parameters and Mtemp:

Σu = Et [u′tut] (C.3)

= M−1
temp

 σ2
π σπσiρπi σπσ∗ρπ∗,

σiσπρπi σ2
i σiσ∗ρi∗

σπσ∗ρπ∗ σiσ∗ρi∗ σ2
∗

Mtemp−1′ (C.4)

where the matrix

 σ2
π σπσiρπi σπσ∗ρπ∗,

σiσπρπi σ2
i σiσ∗ρi∗

σπσ∗ρπ∗ σiσ∗ρi∗ σ2
∗

 is the variance-covariance matrix

of the vector vt.

We can write the macroeconomic dynamics in matrix form as:

0 = FEtŶt+1 +GŶt +HŶt−1 +Mut, (C.5)

where

F =

 fx ψ 0
0 0 0
0 0 0

 , (C.6)

G =

 −1 0 −ψ
0 −1 0
0 0 −1

 , (C.7)

H =

 ρx 0 0
p21 p22 p23

p31 p32 p33

 , (C.8)

M =

 0 0 0
1 0 ρπ∗σπ

σ∗
m31 1 m33

 . (C.9)

where

m31 =
σi(ρπi − ρπ∗ρi∗)
σπ(1− ρ2

π∗)
(C.10)

and
m33 =

σiρi∗
σ∗

. (C.11)

C.1.2 Method of generalized eigenvalues

We consider only solutions of the form:

Ŷt = PŶt−1 +Qut. (C.12)

Each solution (C.12) corresponds to a unique solution of the form (20) in the main
paper, where the matrices Σ and Q have the following one-to-one mapping:

Σ = QM−1
temp. (C.13)
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Additional solutions, such as solutions depending on two lags of state variables,
may exist, but we do not consider them. A solution of the form (C.12) must satisfy
the quadratic matrix equation:

FP 2 +GP +H = 0. (C.14)

To solve for the matrix P , we proceed in two steps. First, we determine all possible
matrices P . Second, we pick one out of several solutions. For the first step, we follow
Uhlig (1999) and solve for the generalized eigenvectors and eigenvalues of Ξ with
respect to ∆, where:

Ξ =

[
−G −H
I3 03

]
, (C.15)

∆ =

[
F 03

03 I3

]
. (C.16)

A generalized eigenvector z is a non-zero [6× 1] vector with associated eigenvalue b,
such that

Ξz = b ·∆z. (C.17)

We solve for b and z using the MATLAB function eig(Xi,Delta). Since Ξ and ∆ are
[6× 6], there are in general six generalized eigenvectors, z1, z2, ..., z6, with associated
generalized eigenvalues b1, b2, ..., b6. Uhlig (1999) proves that there exist [3×1] vectors
z̃1, .., z̃6, such that the generalized eigenvectors take the form

z′i = [biz̃
′
i, z̃
′
i] . (C.18)

Let {i1, i2, i3} ⊂ {1, 2, 3, 4, 5, 6} denote a selection of three eigenvectors with associ-
ated eigenvalues. We define the matrices

Bi1,i2,i3 = diag(bi1 , bi2 , bi3), (C.19)

Ωi1,i2,i3 = [z̃i1 , z̃i2 , z̃i3 ]. (C.20)

Uhlig (1999) proves that any matrix Pi1,i2,i3 of the following form is a solution to
(C.14):

Pi1,i2,i3 = Ωi1,i2,i3Bi1,i2,i3Ω−1
i1,i2,i3

. (C.21)

The expression for Pi1,i2,i3 makes clear that bi1 , bi2 , and bi3 are the eigenvalues of
Pi1,i2,i3 . Since we have to pick three generalized eigenvalues out of six, there are
multiple matrices P solving the matrix quadratic equation (C.14).

For any solution Pi1,i2,i3 , the corresponding matrix Qi1,i2,i3 is given by:

Qi1,i2,i3 = −[FPi1,i2,i3 +G]−1M. (C.22)

To write the equilibrium dynamics in the form (20) in the main paper, one can obtain
the matrix Σ by plugging Qi1,i2,i3 into (C.13).
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Because equations (15) and (16) in the main paper are already in the form of a
VAR(1), rows 2 and 3 of Pi1,i2,i3 simply list the lag parameters of those equations.
Because equation (13) in the main paper has a forward-looking term, the first row of
P is where the different solutions Pi1,i2,i3 differ.

So far, the solution method has been the same irrespective of the number of gen-
eralized eigenvalues with ‖λ‖ > 1 (explosive eigenvalues). However, the procedure for
selecting one solution out of several depends on the number of explosive eigenvalues.
Each solution for P and Q corresponds to a different set of three eigenvalues. We dis-
card equilibria where at least one eigenvalue of P is explosive or where eigenvalues do
not occur in complex conjugate pairs. We also discard equilibria where a real eigen-
value is less than −0.2, and where at least one of the model impulse responses shown
in Figures 3, 4, and 5 switches sign within the first four quarters. If at a given set of
parameter values we only have one equilibrium after imposing these requirements, we
pick that equilibrium. For any set of parameters where we still have multiple equilib-
ria, we pick the equilibrium with the smallest simulated method of moments (SMM)
objective function, with the weight on the Federal Funds rate-output gap correlation
set to zero.

C.2 Asset pricing recursion

Before deriving the asset pricing recursions, we start by deriving some expressions
that will be useful repeatedly. We use ei to denote a row vector with 1 in position i
and zeros elsewhere.

We can use the link between stochastically detrended consumption and the output
gap (equation (1) in the main paper) to express consumption in terms of the current
and lagged output gap:

ct = g + ct−1 + xt − φxt−1. (C.23)

It follows that log consumption growth equals:

ct+1 − ct = g + xt+1 − φxt. (C.24)

We will substitute (C.24) repeatedly into the stochastic discount factor.

The matrix

QM = e1Q (C.25)

denotes the loading of consumption innovations onto the vector of shocks ut, where
e1 is a basis vector with a one in the first position and zeros everywhere else. The
volatility of consumption surprises equals:

σ2
c = QMΣuQ

′
M . (C.26)
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To simplify notation, we define ŝt as the log deviation of surplus consumption
from its steady state. The dynamics of ŝt are:

ŝt = st − s̄, (C.27)

ŝt = θ0ŝt−1 + θ1xt−1 + θ2xt−2 + λ(ŝt−1)QMut, (C.28)

where with an abuse of notation we write:

λ(ŝt) = λ0

√
1− 2ŝt − 1, ŝt ≤ smax − s̄, (C.29)

λ(ŝt) = 0, ŝt ≥ smax − s̄. (C.30)

The steady-state surplus consumption sensitivity equals:

λ0 =
1

S̄
. (C.31)

The steady-state output gap is normalized to zero. The steady0state real short-
term interest rate at xt = 0 and st = s̄ is then the same as in CC:

r̄ = γg − 1

2
γ2σ2

c/S̄
2 − log(β). (C.32)

In our calculations of asset prices, we repeatedly use the following expression for
the expected growth in the log SDF:

Et [mt+1] = log(β)− γg + γŝt + γφxt − γEtŝt+1 − γEtxt+1 (C.33)

= −rt −
γ

2
(1− θ0)(1− 2ŝt), (C.34)

which follows from the asset pricing Euler equation for the real short rate. We often
combine (C.34) with rt = r̄ + (e3 − e2P )Zt.

C.2.1 State space

Our state space for solving for asset prices is five-dimensional: It consists of Z̃t, which
a scaled version of Ŷt, the surplus consumption ratio relative to steady-state ŝt, and
the lagged output gap xt−1.

We next describe the definition of Z̃t. To simplify the numerical implementation
of the asset pricing recursions, it is convenient to define a scaled state vector. We
require that shocks to the scaled state vector are independent standard normal and
that the first dimension of the scaled state vector is perfectly correlated with output
gap innovations. This rotation facilitates the numerical analysis, because it is easier
to integrate over independent random variables. Aligning the first dimension of the
scaled state vector with output gap innovations (and hence surplus consumption
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innovations) helps, because it allows us to use a finer grid to integrate numerically
over this crucial dimension, where asset prices are most nonlinear.

If the scaled state vector equals Z̃t = AŶt for some invertible matrix A, the
dynamics of Z̃t are given by:

Z̃t = AŶt, (C.35)

Z̃t+1 = APA−1︸ ︷︷ ︸
P̃

Z̃t + AQut+1︸ ︷︷ ︸
εt+1

. (C.36)

What should be the variance-covariance matrix of εt+1 and how does it constrain
our choice of A? Note that the matrix Q has rank two, because the matrix M defined
in equation (C.9) has rank two, and Q and M are related via (C.22). We therefore
want A such that the vector εt+1 has two dimensions distributed as independent
standard normals and the third one identically equal to zero. That is, we need A
such that

V art (εt+1) = AQΣuQ
′A′, (C.37)

=

 1 0 0
0 1 0
0 0 0

 . (C.38)

Requiring that the first dimension of εt+1 is perfectly correlated with output-gap
surprises gives a second constraint for A:

e1A = (σc)
−1 e1. (C.39)

Letting Ai denote the ith row of A (i = 1, 2, 3), we compute A using the following
three steps.

1. We set

A1 = (σc)
−1 e1. (C.40)

This ensures that condition (C.39) is satisfied.

2. We use the MATLAB function ‘null’ to compute the null space null (A1QΣuQ
′).

We define n2 as the first vector in null (A1QΣuQ
′), so by definition we know

that n2 (A1QΣuQ
′)′ = 0. We then define the second column of A as

A2 =
n2√

n2QΣuQn′2
. (C.41)

3. We define the vector n3 = null(Q′), so by definition n3Q = 0. We then define
the third row of A as

A3 = n3. (C.42)
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It is then straightforward to verify that (C.38) holds for

A =

 A1

A2

A3

 . (C.43)

C.2.2 Recursion for zero-coupon consumption claims

We now derive the recursion for zero-coupon consumption claims in terms of state
variables Z̃t, ŝt and xt−1. Let P c

nt/Ct denote the price-dividend ratio of a zero-coupon
claim on consumption at time t+ n. The outline of our strategy here is that we first
derive an analytic epxression for the price-dividend ratio for P c

1t/Ct. For n ≥ 1 we
guess and verify recursively that there exists a function Fn(Z̃t, ŝt, xt−1), such that

P c
nt

Ct
= Fn

(
Z̃t, ŝt, xt−1

)
. (C.44)

We start by deriving the analytic expression for F1. The one-period zero coupon
price-consumption ratio solves

P c
1,t

Ct
= Et

[
Mt+1Ct+1

Ct

]
(C.45)

Using (C.23) to substitute for consumption growth, we factorize Mt+1
Ct+1

Ct
:

Mt+1
Ct+1

Ct
= β exp(−γ(ŝt+1 − ŝt)− (γ − 1)(ct+1 − ct))

= β exp(−γ(ŝt+1 − ŝt)− (γ − 1)(g + xt+1 − φxt)) (C.46)

Using the notation fn = log(Fn), (C.28) and (C.34) give:

f1(Z̃t, ŝt, xt−1) = log(β)− (γ − 1) g + γŝt + (γ − 1)φxt

−γEtŝt+1 − (γ − 1)Etxt+1

+
1

2
(γλ(ŝt) + (γ − 1))2σ2

c ,

= g + e1[P − φI]A−1Z̃t +
1

2
(γλ(ŝt) + (γ − 1))2σ2

c

−r̄ − (e3 − e2P )A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt). (C.47)

Next, we solve for fn, n ≥ 2 iteratively. Note that:

P c
nt

Ct
= Et

[
Mt+1Ct+1

Ct

P c
n−1,t+1

Ct+1

]
= Et

[
Mt+1Ct+1

Ct
Fn−1

(
Z̃t+1, ŝt+1, xt

)]
(C.48)
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This gives the following expression for fn:

fn(Z̃t, ŝt, xt−1) = log

[
Et
[
exp

(
log(β)− (γ − 1)g + γŝt + (γ − 1)φxt

−γŝt+1 − (γ − 1)Etxt+1 − (γ − 1)e1A
−1e′1ε1,t+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

. (C.49)

Here, ε1,t+1 denotes the first dimension of the shock εt+1. We clarify that the expres-
sion in parentheses depends only on the first shock to the scaled state vector, ε1,t+1.
Finally, we use (C.34) to re-write fn,t as an expectation involving fn−1,t+1, the state
variables Z̃t, ŝt, and xt−1, and ε1,t+1:

fn(Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
g + e1[P − φI]A−1Z̃t

−r̄ − (e3 − e2P )A−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))− 1)σcε1,t+1

+fn−1(Z̃t+1, ŝt+1, xt)
)]]

. (C.50)

C.2.3 Recursion for zero-coupon bond prices

We use P $
n,t and Pn,t denote the prices of nominal and real n-period zero-coupon

bonds. The strategy is to develop analytic expressions for one- and two-period bond
prices. We then guess and verify recursively that the prices of real and nominal
zero-coupon bonds with maturity n ≥ 2 can be written in the following form:

Pn,t = Bn(Z̃t, ŝt, xt−1), (C.51)

P $
n,t = exp(−nπ∗t)B$

n(Z̃t, ŝt, xt−1), (C.52)

where Bn(Z̃t, ŝt, xt−1) and B$
n(Z̃t, ŝt, xt−1) are functions of the state variables.

As discussed in the main paper, we assume that the short-term nominal interest
rate contains no risk premium, so the one-period log nominal interest rate equals
it = rt+Etπt+1. The means of ît and π̂t are normalized to zero, but in order to derive
bond prices we need to account for the average level of interest rates. We do this by
writing the one-period log nominal interest rate as it = ît+π∗t+ r̄ and the one-period
log real interest rate as rt = ît − Etπ̂t+1 + r̄. One-period bond prices then equal:

P $
1,t = exp(−ît − π∗t − r̄), (C.53)

P1,t = exp(−ît + Etπ̂t+1 − r̄). (C.54)

We next solve for longer-term bond prices including risk premia. Substituting in
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(C.53) into the bond-pricing recursion gives:

P $
2,t = Et

[
Mt+1P

$
1,t+1 exp(−π∗t+1 − π̂t+1)

]
(C.55)

= Et
[
Mt+1 exp(−ît+1 − 2π∗t+1 − π̂t+1 − r̄)

]
(C.56)

= βEt
[
exp(−γ(ŝt+1 − ŝt)− γ(g + xt+1 − φxt)− ît+1 − 2π∗t+1 − π̂t+1 − r̄))

]
.

(C.57)

We can now verify that the two-period nominal bond price takes the form (C.52):

B$
2(Z̃t, ŝt, xt−1) = exp (log(β)− γg + γŝt + γφxt)

× exp
(
Et
(
−γŝt+1 − γxt+1 − ît+1 − π̂t+1 − r̄

))
×Et

exp

−γ (λ(ŝt) + 1)QM − [(e2 + e3)Q+ 2e3]︸ ︷︷ ︸
v$

ut+1

 .
(C.58)

Here, we define the vector v$ to simplify notation. The random walk component of
inflation π∗t does not appear in (C.58), because B$

2 is already scaled by exp(−2π∗t)
by definition (C.52). Taking logs, applying (C.34), and using the definition for the
sensitivity function λ(ŝt), we get:

b$
2 = −e3[I + P ]A−1Z̃t +

1

2
v$Σuv$′

+γ (λ(ŝt) + 1)QMΣuv
′
$ − 2r̄. (C.59)

We similarly solve for two-period real bond prices in closed form:

P2,t = exp (log(β)− γg + γŝt + γφxt)

× exp
(
Et
(
−γŝt+1 − γxt+1 − ît+1 + Et+1π̂t+2 − r̄

))
×Et

exp

(−γ(λ(ŝt) + 1)QM − (e3 − e2P )Q︸ ︷︷ ︸
vr

)ut+1


(C.60)

We define the vector vr to simplify notation. Taking logs, applying (C.34), and using
the definition for λ(ŝt) gives:

b2(Z̃t, ŝt, xt−1) = −(e3 − e2P ) [I + P ]A−1Z̃t +
1

2
vrΣuv

′
r + γ (λ(ŝt) + 1)QMΣuv

′
r − 2r̄.

(C.61)
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For n ≥ 3, we use (C.34) to obtain the following recursion for real bond prices:

Bn(Z̃t, ŝt, xt−1) = Et [exp (log (β)− γg + γŝt (C.62)

−γŝt+1 + γφxt − γxt+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]

= Et
[
exp

(
−r̄ − (e3 − e2P )A−1Z̃t −

γ

2
(1− θ0)(1− 2ŝt)

−γ(1 + λ(ŝt))σcε1,t+1 + bn−1(Z̃t+1, ŝt+1, xt)
)]
. (C.63)

The recursion for nominal bond prices with n ≥ 3 is similar. It is complicated by
the fact that we need to integrate over shocks to the inflation target:

B$
n(Z̃t, ŝt, xt−1) = Et [exp (log(β)− γg + γŝt + γφxt (C.64)

−γŝt+1 − γxt+1 − π̂t+1 − nu∗t+1 + b$
n−1(Z̃t+1, ŝt+1, B

$xt)
)]
.

To reduce the number of dimensions along which we need to integrate numerically,
we split u∗t+1 into a component that is spanned by εt+1 plus an orthogonal shock.
This is useful because we can then use analytic expressions to integrate over the
orthogonal component. We use the standard expression for conditional distributions
of multivariate normal random variables. The distribution of u∗t+1 conditional on εt+1

is normal with:

u∗t+1 |εt+1 ∼ N

(AQΣue
′
3)︸ ︷︷ ︸

vec∗

′
εt+1, (σ

∗)2 − (AQΣue
′
3)′(AQΣue

′
3)︸ ︷︷ ︸

(σ⊥)
2

 . (C.65)

We then write u∗t as the sum of two independent shocks:

u∗t+1 = vec∗εt+1 + ε⊥t+1, (C.66)

where ε⊥t+1 is defined as

ε⊥t+1 := u∗t+1 − vec∗εt+1 (C.67)

We integrate analytically over ε⊥t+1 and substitute in (C.34):

B$
n(Z̃t, ŝt, xt−1) = Et [exp (log(β)− γg + γŝt + γφxt − γŝt+1 − γxt+1

−π̂t+1 − nv∗εt+1 +
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, B
$xt)

)]
,

= Et
[
exp

(
−r̄ − e3A

−1Z̃t −
γ

2
(1− θ0)(1− 2ŝt)

−(γ(1 + λ(ŝt))σc + e2A
−1e′1︸ ︷︷ ︸

vpi1

+ nv∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ nv∗e′2

 ε2,t+1

+
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, B
$xt)

)]
. (C.68)
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We define the vectors vpi1 and vpi2 as given above to avoid computing them repeat-
edly in our numerical algorithm.

C.2.4 Assessing the approximation error for the one-period nominal rate

Throughout the paper, we use the approximation

it = rt + Etπt+1. (C.69)

This approximation is useful, because it leads to log-linear macroeconomic dynamics
in the output gap, inflation, and the nominal interest rate. In order to undestand the
significance of the error in this approximation, we now derive the exact one-period
nominal bond yield while taking the dynamics for real consumption and the real
interest rate as given. The exact one-period nominal bond price equals:

P $,exact
1,t = exp (log(β)− γg + γŝt + γφxt)

× exp (Et (−γŝt+1 − γxt+1 − π̂t+1 − π∗t+1))

×Et [exp ((−γ (λ(ŝt) + 1)QM − [e2Q+ e3])ut+1)] .

(C.70)

We now substitute in (C.34), and take logs to get:

log
(
P $,exact

1,t

)
= −rt − Etπt+1

+
1

2
(e2Q+ e3) Σu (e2Q+ e3)′ + γ (λ(ŝt) + 1)QMΣu (e2Q+ e3)′ .

(C.71)

We decompose the one-period nominal bond yield into the approximate nominal yield,
it, and approximation error:

y$,exact
1,t = rt + Etπt+1︸ ︷︷ ︸

it

−1

2
(e2Q+ e3) Σu (e2Q+ e3)′ − γ (λ(ŝt) + 1)QMΣu (e2Q+ e3)′︸ ︷︷ ︸

Approximation Error

(C.72)

At our estimates, we find that the simulated approximation error has a standard
deviation of 2bps.
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C.2.5 Computing returns

The log return on the consumption claim equals:

rct+1 = log

(
P c
t+1 + Ct+1

P c
t

)
, (C.73)

= ∆ct+1 + log

1 +
P ct+1

Ct+1

P ct
Ct

 . (C.74)

Real and nominal log bond yields equal:

yn,t = − 1

n
bn,t, (C.75)

y$
n,t = − 1

n
b$
n,t + π∗t. (C.76)

Real log bond returns equal:

rn,t+1 = bn−1,t+1 − bn,t. (C.77)

Nominal log bond returns equal:

r$
n,t+1 = b$

n−1,t+1 − b$
n,t − (n− 1)π∗,t+1 + nπ∗t. (C.78)

Real and nominal bond log excess returns then equal:

xrn,t+1 = rn,t+1 − rt, (C.79)

xr$
n,t+1 = r$

n,t+1 − it. (C.80)

C.2.6 Levered stock prices and returns

We note that the price of the levered equity claim is δP c
t , so the price-dividend ratio

equals:

P δ
t

Dδ
t

= δ
Ct
Dδ
t

P c
t

Ct
. (C.81)

Using the expression

Dδ
t+1 = P c

t+1 + Ct+1 − (1− δ)P c
t exp (rt)− δP c

t , (C.82)

and

P δ
t = δP c

t (C.83)
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gives the gross return on levered stocks:

(
1 +Rδ

t+1

)
=

Dδ
t+1 + P δ

t+1

P δ
t

, (C.84)

=
1

δ

P c
t+1 + Ct+1 − (1− δ)P c

t exp(rt)

P c
t

, (C.85)

=
1

δ

(
1 +Rc

t+1

)
− 1− δ

δ
exp (rt) . (C.86)

Log stock excess returns then equal:

xrδt+1 = rδt+1 − rt. (C.87)

To mimic firms’ dividend smoothing in the data, we report simulated moments
for the price of equities dividend by dividends smoothed over the past 64 quarters:

P δ
t /

(
1

64
(Dδ

t +Dδ
t−1 + ...+Dδ

t−63)

)
. (C.88)

C.3 Details: Risk-premium decomposition

For the risk-premium decomposition in Table 7 in the main paper, we use the following
steps. We first compute risk-neutral valuations and returns. We then decompose risk-
neutral returns further into news about the real interest rate and news about cash
flows using the Campbell and Ammer (1993) loglinear expressions. We then define
returns due to risk premia as log asset excess returns minus cash-flow news. We
use the superscript rn for risk-neutral, superscript cf for cash flow, and rp for risk
premium.

Risk-neutral valuations are expected cash flows discounted with the risk-neutral
discount factor, that is consistent with equilibrium dynamics for the real interest rate:

M rn
t+1 = exp(−rt) (C.89)

= exp(−ît + Etπ̂t+1 − r̄). (C.90)

C.3.1 Risk-neutral zero-coupon bond prices

We use analogous recursions to solve for risk-neutral bond prices. One-period risk-
neutral bond prices are given exactly as before:

P $,rn
1,t = exp(−ît − π∗t − r̄), (C.91)

P rn
1,t = exp(−ît + Etπ̂t+1 − r̄). (C.92)
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For n > 1, we guess and verify that the prices of real and nominal risk-neutral zero-
coupon bonds with maturity n can be written in the following form

P rn
n,t = Brn

n (Z̃t, ŝt, xt−1), (C.93)

P $,rn
n,t = exp(−nπ∗t )B$,rn

n (Z̃t, ŝt, xt−1). (C.94)

for some functions Brn
n (Z̃t, ŝt, xt−1) and B$,rn

n (Z̃t, ŝt, xt−1).

We derive the two-period risk-neutral nominal bond price analytically:

P $,rn
2,t = exp(−rt)Et

[
P $,rn

1,t+1 exp(−π∗t+1 − π̂t+1)
]

(C.95)

= exp(−rt)Et
[
exp(−ît+1 − 2π∗t+1 − π̂t+1 − r̄)

]
. (C.96)

We can hence verify that the two-period risk-neutral nominal bond price takes the
form (C.52) with:

B$,rn
2 (Z̃t, ŝt, xt−1) = exp

(
−ît + Etπ̂t+1 − r̄

)
exp

(
Et
(
−ît+1 − π̂t+1 − r̄

))
×Et

exp

−[(e2 + e3)Q+ 2e3]︸ ︷︷ ︸
v$

ut+1

 .
(C.97)

Here, the vector v$ is identical to the case with risk aversion. Taking logs, we get:

b$,rn
2 = −e3 [I + P ]A−1Z̃t +

1

2
v$Σuv$′ − 2r̄ (C.98)

Comparing expressions (C.98) and (C.59) shows that they agree when γ = 0. We
similarly solve for 2-period real bond prices in closed form:

P rn
2,t = exp

(
−ît + Etπ̂t+1 − r̄

)
× exp

(
Et
(
−ît+1 + Et+1π̂t+2 − r̄

))
×Et

exp

−(e3 − e2P )Q︸ ︷︷ ︸
vr

ut+1

 . (C.99)

The vector vr is again identical to the case with risk aversion. Taking logs gives:

brn2 (Z̃t, ŝt, xt−1) = −(e3 − e2P ) [I + P ]A−1Z̃t +
1

2
vrΣuvr′ − 2r̄. (C.100)

We note that the risk-neutral bond prices (C.100) and bond prices with risk aversion
(C.61) are identical when the utility curvature parameter γ equals zero.

For n ≥ 3 the n-period risk neutral real bond price Brn
n satisfies the recursion:

Brn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−r̄ − (e3 − e2P )A−1Z̃t + bn−1(Z̃t+1, ŝt+1, xt)

)]
(C.101)
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We obtain a similar recursion for risk-neutral nominal bond prices:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−ît + Etπ̂t+1 − r̄ − π̂t+1 − nu∗t+1 + b$

n−1(Z̃t+1, ŝt+1, B
$xt)

)]
.

We again use the decomposition u∗t+1 = vec∗εt+1 + ε⊥t+1 from Section C.2.3 to reduce
the dimensionality of the numerical integration:

B$,rn
n (Z̃t, ŝt, xt−1) = Et

[
exp

(
−ît + Etπ̂t+1 − r̄ − π̂t+1 − n · vec∗εt+1 +

n2

2
(σ⊥)2 (C.102)

+b$
n−1(Z̃t+1, ŝt+1, B

$xt)
)]
,

= Et

exp

−r̄ − e3A
−1Z̃t − (e2A

−1e′1︸ ︷︷ ︸
vpi1

+ n · vec∗e′1)ε1,t+1

−

e2A
−1e′2︸ ︷︷ ︸

vpi2

+ n · vec∗e′2

 ε2,t+1 +
n2

2
(σ⊥)2 + b$

n−1(Z̃t+1, ŝt+1, B
$xt)

 .
(C.103)

C.3.2 Risk-neutral zero-coupon consumption claims

Next, we derive recursive solutions for the risk-neutral prices of zero-coupon consump-
tion claims. Let P c,rn

nt /Ct denote the risk-neutral price-dividend ratio of a zero-coupon
claim on consumption at time t + n. The risk-neutral price-consumption ratio of a
claim to the entire stream of future consumption equals:

P c,rn
t

Ct
=

∞∑
n=1

P c,rn
nt

Ct
. (C.104)

For n ≥ 1, we guess and verify there exists a function F rn
n (Z̃t, ŝt, xt−1), such that

P c,rn
nt

Ct
= F rn

n

(
Z̃t, ŝt, xt−1

)
. (C.105)

We start by deriving the analytic expression for F rn
1 . The one-period risk-neutral

zero-coupon price-consumption ratio solves

P c,rn
1,t

Ct
= exp

(
−ît + Etπ̂t+1 − r̄

)
Et
[
Ct+1

Ct

]
(C.106)

Using (C.23) to substitute for consumption growth, we can derive the following ana-
lytic expression for f rn1 :

f rn1 (Z̃t, ŝt, xt−1) = −ît + Etπ̂t+1 − r̄ + g − φxt + Etxt+1 +
1

2
σ2
c ,

= − (e3 − e2P )A−1Z̃t − r̄ + g + e1[P − φI]A−1Z̃t +
1

2
σ2
c .

(C.107)
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Next, we solve for fn, n ≥ 2 iteratively:

P c,rn
nt

Ct
= exp

(
−ît + Etπ̂t+1 − r̄

)
Et
[
Ct+1

Ct
F rn
n−1

(
Z̃t+1, ŝt+1, xt

)]
(C.108)

This gives the following expression for f rnn :

f rnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
−ît + Etπ̂t+1 − r̄ + g − φxt + Etxt+1 + σcε1,t+1

+f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (C.109)

Finally, we re-write f rnn,t as an expectation involving f rnn−1,t+1, the state variables Z̃t,
and period t+ 1 shocks:

f rnn (Z̃t, ŝt, xt−1) = log
[
Et
[
exp

(
g + e1[P − φI]A−1Z̃t − r̄ − (e3 − e2P )A−1Z̃t+

+σcε1,t+1 + f rnn−1(Z̃t+1, ŝt+1, xt)
)]]

. (C.110)

C.3.3 Risk-neutral returns

We plug risk-neutral price-consumption ratios and bond prices into equations (C.74)
through (C.80). This gives risk-neutral returns on the consumption claim, risk-neutral
log excess bond returns, and risk-neutral bond yields. We then substitute risk-neutral
returns on the consumption claim into (C.86)-(C.87) to obtain risk-neutral log excess
stock returns.

C.3.4 Cash-flow news, real-rate news, and risk-premium excess returns

We decompose risk-neutral returns further into cash-flow news and real-rate news.
We use the approximate log-linear decomposition of Campbell and Shiller (1988):

xrδ,rnt+1 = rδ,rnt+1 − rt, (C.111)

= rδ,rnt+1 − Etr
δ,rn
t+1 (C.112)

= (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j︸ ︷︷ ︸
Cash Flow News

− (Et+1 − Et)
∞∑
j=1

ρjrt+j︸ ︷︷ ︸
Real Rate News

. (C.113)

The first equality follows, because the risk neutral SDF ensures that expected risk
neutral returns are equal to the real risk-free rate rt. Here, ρ is the log-linearization
constant corresponding to the risk-neutral price-dividend ratio

ρ =
1

1 + exp (mean(pdδ,rn))
, (C.114)
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and mean(pdrn) denotes the average risk-neutral log price-dividend ratio, which in
practice we obtain from 2 model simulations of length 10000.

We use the following analytic expression for the equity excess returns due to real-
rate news:

xrδ,rrt+1 = − (Et+1 − Et)
∞∑
j=1

ρjrt+j (C.115)

= −ρ (e3 − e2P ) (I − ρP )−1Qut+1. (C.116)

We obtain cash-flow news as risk-neutral excess returns minus returns due to real-rate
news:

xrδ,cft+1 = xrδ,rnt+1 + ρ (e3 − e2P ) (I − ρP )−1Qut+1 (C.117)

The risk-premium component of equity excess returns equals log excess stock
returns minus risk-neutral excess returns:

xrδ,rpt+1 = xrδt+1 − xr
δ,rn
t+1 . (C.118)

We similarly decompose bond returns into cash-flow news, real-rate news, and
risk-premium excess returns, using the log-linear exact expression from Campbell
and Ammer (1993):

xr$,rn
n,t+1 = r$,rn

t+1 − it, (C.119)

= r$,rn
n,t+1 − Etr

$,rn
n,t+1, (C.120)

= (Et+1 − Et)

{
−

n−1∑
i=1

πt+1+i −
n−1∑
i=1

rt+1+i

}
. (C.121)

The real-rate news component of nominal bond log excess returns is simply the risk-
neutral log excess return on a real n-period bond

xr$,rr
n,t+1 = (Et+1 − Et)

n−1∑
i=1

rt+1+i, (C.122)

= xrrnt+1. (C.123)

With this, we compute the cash-flow news component of nominal bond returns:

xr$,cf = xr$,rn
t+1 − xrrnt+1. (C.124)

The risk-premium component of log excess nominal bond returns is defined as the log
excess return minus the risk-neutral log excess return:

xr$,dr
t+1 = xr$

t+1 − xr
$,rn
t+1 . (C.125)
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D Details: Numerical algorithm

Since our preferences nest CC, a minimum requirement for any numerical solution
method is that it must be accurate for the original CC model and calibration. We
evaluate asset prices by iterating on a grid for the state vector following Wachter
(2005). Other numerical methodologies are faster, but their cost is that they cannot
replicate the economic properties of Wachter (2005)’s numerical solution for CC. In
unreported results, we verified that analytic linear approximations to the sensitivity
function λ (e.g. Lopez, López-Salido, and Vazquez-Grande 2014), numerical higher-
order perturbation methods using Dynare (Rudebusch and Swanson 2008), and global
projection methods give solutions for CC that are economically very different from
Wachter (2005)’s numerical solution.

Other approaches in the literature are also not appropriate for our problem. While
Chen (2017) solves a model with habit and production using global projection and per-
turbation methods, his model features a linear sensitivity function and heteroskedastic
consumption. By contrast, we have homoskedastic consumption and a highly non-
linear sensitivity function. Similarly, affine term structure models, such as Dai and
Singleton (2000), generate affine relations between risk premia and state variables by
assuming analytically convenient functional forms for the pricing kernel. In contrast
to models that assume more convenient pricing kernels, our preferences are consis-
tent with the standard log-linear New Keynesian consumption Euler equation and
generate conditionally homoskedastic macroeconomic dynamics.

While iterating on a grid is significantly slower than perturbation or global pro-
jection methods, it is not prohibitively so. Our MATLAB algorithm for solving the
asset pricing recursions (described in Section D.1) takes 80 seconds to run on a Lenovo
X270 laptop with an i7-7600 CPU. Simulating the model (described in Section D.2)
takes 11 seconds. The risk-neutral asset pricing recursions and simulating the risk-
neutral stock returns take an additional 80 seconds and 11 seconds. MATLAB is not
a particularly efficient programming language, so it is plausible that further speed
ups are possible by using a lower-level programming language, such as FORTRAN or
C.

D.1 Implementing the asset pricing recursions

We implement the recursions in Sections C.2.2 and C.2.3 numerically through value
function iteration on a grid. We solve for the functions fn, bn, and b$

n using value
function iteration along a five-dimensional state vector. We use a five-dimensional
grid, with the first three dimensions corresponding to Z̃t, the fourth dimension cor-
responding to ŝt, and the fifth dimension corresponding to xt−1.
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D.1.1 Grid

In this section, we use Z̃, ŝ, x to denote the corresponding time-t variables. We use
superscripts − to denote variables in the previous period and + to denote variables in
the next period. We solve numerically for fn, bn, and b$

n as functions of the vector of

state variables
[
Z̃, ŝ, x−

]
.

Our grid is densest along the ŝ dimension to capture important non-linearities of
asset prices with respect to the surplus consumption ratio. Following Wachter (2005),
we choose a grid for the surplus consumption ratio that consists of an upper segment
and a lower segment and covers a wide range of values for st. Let Sgrid,1 denote a
vector of 20 equally spaced points between 0 and Smax with Smax included and sgrid,2
a vector of 30 equally spaced points between min (log (Sgrid,1)), and −50. The grid
for ŝt = st − s̄ then consists of the concatenation of sgrid,2 − s̄ and log (Sgrid,1)− s̄.

We find that bond and stock prices are close to loglinear in Z̃ and x̂−, so coarser
grids are sufficient along those dimensions of the state vector. In fact, the analytic
expressions for f1, b2, and b$

2 show that one-period zero-coupon consumption claims
and two-period bond prices are exactly log-linear in Z̃ and x−. Numerical results
indicate that this property translates to longer-period claims and fn, bn, and b$

n are
still approximately linear in Z̃ and x− for general n. To speed up the value function
iteration, we therefore use two grid points for each dimension of Z̃ and for x−.

For Z̃, we use an equal-spaced three-dimensional grid. Let N denote the number
of grid points along each dimension and m the width of the grid as a multiple of the
unconditional standard deviation of Z̃. For each dimension of Z̃, we choose a grid of
N equal-spaced points with the lowest point equal to −m × std(Z̃) and the highest
point equal to m× std(Z̃). Here, the unconditional variance-covariance matrix of Z̃
is determined implicitly by the equation:

std(Z̃) =

√
P̃ V ar

(
Z̃
)
P̃ ′ + diag(1, 1, 0). (D.1)

For our baseline grid, we set N = 2 and m = 2.

For x−, we consider an equal-spaced grid with sizexm points ranging from

min
(
e1AZ̃t : Z̃ ∈ grid

)
to max

(
e1AZ̃ : Z̃ ∈ grid

)
. This choice of grid ensures that

the grid for x− covers the entire range of output gap values implied by the grid for
Z̃. In our baseline evaluation, we set sizexm = 2.

With N = 2 grid points along each of the three dimensions of Z̃, 50 gridpoints for
ŝ, and sizexm = 2 grid points for x−, the combined grid has a total of 23 ·50 ·2· = 800
points.
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D.1.2 Numerical integration

Following Wachter (2005), we use Gauss-Legendre quadrature to evaluate the expec-
tations (C.50), (C.63), and (C.68) numerically. Gauss-Legendre quadrature is or-
ders of magnitude faster than computing expectations by simulation. As in Wachter
(2005), we evaluate infinite integrals over the density of standardized consumption
shocks (ε1,t) using 40 integration node points and an integration domain ranging from
−8 standard deviations to +8 standard deviations. To conserve speed and memory,
we integrate over shocks orthogonal to surplus consumption (ε2,t) using a somewhat
smaller number of integration node points, 15, but again an integration domain of
±8 standard deviations. To evaluate bond and stock prices at points that are not on
the grid, we use loglinear multi-linear interpolation and extrapolation.

For completeness, we recap the key features of Gauss-Legendre integration. Let
xGLi, i = 1, ..., NGL and wGLi = 1, ..., NGL denote the Gauss-Legendre nodes
and weights of NGLth order. Gauss-Legendre quadrature then approximates a def-
inite integral of any smooth function f on the interval [−1, 1] by

∫ 1

−1
f (x) dx ≈∑NGL

i=1 wGLif (xGLi). By change of variable, it is immediate that we can approxi-
mate the integral of a smooth function f on an interval [−ā, ā] by

∫ ā

−ā
f (x) dx ≈

NGL∑
i=1

ā× wGLi︸ ︷︷ ︸
wGLāi

f

ā× xGLi︸ ︷︷ ︸
xGLāi

 . (D.2)

Here, we use xGLāi and wGLāi to denote Gauss-Legendre node points and weights
scaled to the interval [−ā, ā].

We implement Gauss-Legendre quadrature to take expectations over εt+1 as fol-
lows. Let N1 denote the number of Gauss-Legendre nodes and ā1 denote the integra-
tion domain for the shock ε1,t, that is perfectly correlated with output innovations.
We set xGL1,i = xGLā1

i and wGL1,i = wGLā1
i for i = 1, ..., N1, where the weights and

nodes are as defined in equation (D.2). Moreover, we set

pGL1,i =
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i/

N1∑
i=1

(
1√
2π
exp

(
−xGL2

1,i

)
wGL1,i

)
, (D.3)

and use the scaled weights pGL1,i for numerical integration. The scaling of (D.3)
ensures that the numerical expectation of a constant is evaluated to be the same
constant (or intuitively that discretized probabilities sum to one).
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We then evaluate numerically the expectation of any smooth function f of ε1,t via:

E [f (ε1,t)] =

∫ ∞
−∞

1√
2π
exp

(
−ε21
)
f (ε1) dε1, (D.4)

≈
∫ ā1

−ā1

1√
2π
exp

(
−ε21
)
f (ε1) dε1, (D.5)

≈
N1∑
i=1

pGL1,if (xGL1,i) . (D.6)

Accuracy increases with ā1 and N1. We follow Wachter (2006) in setting N1 = 40
and ā1 = 8.

To take expectations over ε2,t, we similarly use Gauss-Legendre quadrature with
integration domain ā2 = 8 and number of nodes N2 = 15. We set xGL2,i = xGLā2

i

and wGL2,i = wGLā2
i for i = 1, ..., N2 and define the scaled weights:

pGL2,i =
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i/

N2∑
i=1

(
1√
2π
exp

(
−xGL2

2,i

)
wGL2,i

)
, (D.7)

Since ε1,t and ε2,t are independent, we can evaluate the expectation of any smooth
function f (ε1,t, ε2,t) as

Ef (ε1,t, ε2,t) =

∫ ∞
−∞

1√
2π
exp

(
−ε22
) ∫ ∞
−∞

1√
2π
exp

(
−ε21
)
f (ε1, ε2) dε1dε2, (D.8)

≈
N2∑
i=1

pGL2,i

[
N1∑
j=1

pGL1,jf (xGL1,i, xGL2,j)

]
. (D.9)

D.1.3 Recursive step

Let a superscript num denote the numerical counterparts to the analytic functions fn,

bn, b$
n. We start by initializing fnum1

(
Z̃, ŝ, x−

)
, bnum2

(
Z̃, ŝ, x−

)
, and b$,num

2

(
Z̃, ŝ, x−

)
at each grid point according to the analytic expressions (C.47), (C.59) and (C.61).

Next, we apply the recursive expressions (C.50), (C.63), and (C.68) along the grid.

Having computed fnumn−1 along the entire grid, we evaluate fnumn

(
Z̃, ŝ, x−

)
at a grid
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point
(
Z̃, ŝ, x−

)
as follows. We compute the expectation (C.50) numerically as:

fnumn (Z̃, ŝ, x−) = log

[
N2∑
j=1

pGL2,j

[
N1∑
i=1

pGL1,i · exp
(
g + e1[P − φI]A−1Z̃

−r̄ − (e3 − e2P )A−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

−(γ(1 + λ(ŝ))− 1)σc × xGL1,i

+fnumn−1

P̃ Z̃ +

 xGL1,i

xGL2,j

0

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(D.10)

where we evaluate x as a function of the state vector as

x = e1A
−1Z̃. (D.11)

To compute the right-hand-side of (D.10), we need to evaluate fnumn−1 at points that are
not on our grid. We interpolate fnumn−1 linearly (and hence F num

n−1 log-linearly). When
the argument is outside the range of the grid, we extrapolate fnumn−1 linearly. It is clear
from (C.47) that linear inter- and extrapolation gives a good approximation of f1. In
fact, we can see that f1 is exactly linear in Z̃, independent of x−, and that it depends
on λ(ŝ) = λ0

√
1− 2ŝ. We accommodate the fact that f1 is not linear in ŝ by choosing

a much denser grid along the ŝ dimension. We do not have analytic expressions for
fn, n > 1 (after all, that’s why we need a numerical solution), but numerical solutions
indicate that linear inter- and extrapolation gives good approximations for fn with
the chosen grid.

In terms of coding (D.10), we face a trade-off between speed and readability of the
code. We pre-allocate matrices outside loops and we use code linear interpolation by
hand (rather than using a pre-written interpolation routine) to conserve speed and
memory. We also inline the linear interpolation steps (i.e. write them directly into
the main function rather than calling a separate interpolation function). This speeds
up the code substantially, while somewhat reducing its readability.

There are different methods to interpolate multidimensional functions. Specif-
ically, we use multi-linear interpolation, corresponding to interpolating along each
dimension one at a time. In order to enhance computational speed we do not rely on
a pre-programmed interpolation routine, instead coding our own minimal interpola-
tion routine. It is well-known that the result of multi-linear (or in the two-dimensional
case bi-linear) interpolation does not depend on in which order one interpolates the

different arguments. We find it convenient to interpolate fnumn−1

(
Z̃, ŝ, x−

)
first along

the x− dimension, then along ŝ, then along Z̃1, and finally along the Z̃2 and Z̃3

dimensions.

Finally, we evaluate the price-consumption ratio for the aggregate consumption
stream by approximating it as the sum of the first 300 zero-coupon consumption
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claims:

Gnum
(
Z̃t, ŝt, xt−1

)
=

300∑
n=1

exp
(
fnumn (Z̃t, ŝt, xt−1)

)
. (D.12)

We iterate bnumn

(
Z̃, ŝ, x−

)
and b$,num

n

(
Z̃, ŝ, x−

)
similarly according to:

bnumn (Z̃t, ŝt, xt−1) = log

[
N2∑
j=1

pGL2,j

[
N1∑
i=1

pGL1,i · exp
(
−r̄ − (e3 − e2P )A−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

−γ (1 + λ(ŝ))σc × xGL1,i

+bnumn−1

P̃ Z̃ +

 xGL1,i

xGL2,j

0

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 , (D.13)

and

b$,num
n (Z̃t, ŝt, xt−1) = log

[
N2∑
j=1

pGL2,j

[
N1∑
i=1

pGL1,i · exp
(
−r̄ − e3A

−1Z̃ − γ

2
(1− θ0)(1− 2ŝ)

− (γ (1 + λ(ŝ))σc + vpi1 + n · vec∗e′1)× xGL1,i

− (vpi2 + n · vec∗e′2)xGL2,j +
n2

2

(
σ⊥
)2

+b$,num
n−1

P̃ Z̃ +

 xGL1,i

xGL2,j

0

 , θ0ŝ+ θ1x+ θ2x
− + λ (ŝ)xGL1,i, x

 ,
(D.14)

We again use multi-linear interpolation and extrapolation to evaluate b$,num
n−1 and bnumn−1

at points that are not on the grid.

We similarly implement the recursions (C.101), (C.103), and (C.110) numerically
to obtain risk-neutral bond and consumption claim valuations Brn,num

n , Brn,$,num
n ,

Grn,num.

D.2 Simulating the Model

We simulate a draw of length T . Reported results in Tables 2 through 6 use T = 10000
and discard the first 100 simulation periods to ensure that the system has reached the
stochastic steady-state. Tables 2 through 6 report model moments averaged across 2
independent simulations.

We use superscript sim to denote simulated quantities. We use the MATLAB
function mvnrnd to draw
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εsim1 , ..., εsimT
iid∼ N (0, diag(1, 1, 0)). We similarly generate independent draws for the

orthogonal shock ε⊥,sim1 , ..., ε⊥,simT

iid∼ N(0, σ⊥). We generate draws for usim∗t by plugging
εsimt and ε⊥,simt into (C.66). We generate draws for Z̃sim

t , t = 1, ..., T by setting Z̃sim
1 =

0 and then updating according to (C.36). This gives the simulated output gap,
inflation gap, and interest rate gap for t = 1, 2, ..., T through the relation[
xsimt , π̂simt , îsimt

]
= Ŷ sim

t = A−1Z̃sim
t . We generate draws for the surplus consumption

ratio by setting ŝsim1 = 0 and xsim0 = 0 and then updating according to (C.28).
We generate the simulated inflation target series π∗t, t = 1, 2, ..., T by starting from
πsim∗1 = 0 and updating it according to equation (17) in the main paper. We initialize
simulated log consumption at csim1 = 0 and update it using (C.23). We then drop
the first 100 simulation periods to allow the system to converge to the stochastic
steady-state.

Having generated draws for the five state variables Z̃sim, ŝsim, and xsimt−1, we obtain

the simulated consumption-claim price-dividend ratio as (P c/C)simt = Gnum
(
Z̃sim
t , ŝsimt , xsimt−1

)
,

n-period real bond prices as

P sim
n,t = Bnum

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
, and

B$,sim
n,t = B$,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
. We obtain the corresponding risk-neutral valua-

tion ratios by plugging into the risk-neutral asset pricing solutions:

(P c/C)rn,simt = Grn,num
(
Z̃sim
t , ŝsimt , xsimt−1

)
,

P rn,sim
n,t = Brn,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
, and

Brn,$,sim
n,t = Brn,$,num

n

(
Z̃sim
t , ŝsimt , xsimt−1

)
. We obtain nominal bond prices P $,sim

n,t by

combining B$,sim
n,t and usim∗t according to (C.52). We similarly obtain risk-neutral

nominal bond prices P rn,$,sim
n,t by combining Brn,$,sim

n,t and usim∗t according to (C.52).

To deal with the fact that Z̃sim
t , ŝsimt , xsimt−1 are not usually on grid points we

adopt a similar linear interpolation strategy as in the numerical evaluation of the
asset pricing recursions described in Section D.1.3. We interpolate Gnum, Bnum

n ,
and B$,num

n log-linearly. We simplify the interpolation strategy slightly compared to
Section D.1.3. We use the MATLAB function griddedInterpolant, sacrificing some
computational speed for simpler code. Even though rare events (and especially ex-
tremely negative realizations for ŝ) matter for the value function iteration in Section
D.1.3, low-probability events have very little impact on the properties of simulated
asset prices taking as given Gnum, Bnum, and B$,num. We therefore simplify the log-
linear interpolation by truncating Z̃sim

t , ŝsimt , and xsimt−1 at the maximum and minimum
values covered by the grid.

Having generated
(
P c

C

)sim
t

, t = 1, ..., T , we compute log returns on the consump-

tion claim rc,simt+1 according to (C.74). We obtain simulated price-dividend ratios for
levered stocks by plugging into (C.81). Finally, we obtain log bond yields and stock
and bond excess returns as described in Section C.2.5. Risk-neutral bond and stock
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returns are computed by substituting
(
P c

C

)rn,sim
, P rn,$,sim

n,t , and P rn,sim
n,t into the same

relations.

We obtain cash-flow news, real-rate news, and risk-premium excess returns for
nominal bonds and levered stocks by substituting simulated returns and real rates
into the expression in Section C.3.4. In our simulations, it is possible but very rare
(less than 1 in 20000 simulation periods) that the levered price-dividend ratio turns
negative. In that event, we discard the simulation run and simulate the model again.

D.3 Parameter units

This subsection details the relation between parameter values in empirical (reported
in the paper) and natural units (used for solving the code). We solve the model in
natural units. However, it is most natural to report empirical moments and summary
statistics in empirical units for interpretability.

For comparability with empirical moments, Table 1 reports model parameters in
units that correspond to the output gap in annualized percent, and inflation and inter-
est rates in annualized percent. For comparability with CC, we report the discount
rate and the persistence of surplus consumption in annualized units. Concretely,
Table 1 reports the following scaled parameters:

400× g, (D.15)

400× r̄, (D.16)

θ4
0, (D.17)

β4, (D.18)
1

4
× ψ, (D.19)

400× σπ, (D.20)

400× σi, (D.21)

400× σ∗, (D.22)

4× pπx, (D.23)

4× pix (D.24)

All other parameters reported in Table 1 do not need to be scaled.
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E Details: Econometric methodology

E.1 Impulse response functions

This section describes how we estimate the macroeconomic impulse responses, that
we use for the SMM estimation and are shown in Figures 3 through 5. We follow the
procedure described below for both actual and simulated data, with the simulated
data length matching the length of the empirical sample. Model impulse responses
in Figures 3 through 5 are averaged over 100 simulations. In this section, we use
subscripts IRF if variable names would otherwise be similar to different variables
elsewhere in the paper.

We estimate a VAR(1) of the form

YIRF,t = ΠYIRF,t−1 + εt, (E.1)

where we define the vector for the VAR(1) as:

YIRF,t = [xt−1, πt, it]. (E.2)

The shocks εt are not orthogonal and we denote their estimated variance-covariance
matrix by Σε.

Next, we rotate the innovations to be orthogonal. This means that we need to
re-write the VAR(1) in the form:

R−1YIRF,t = ΠRYIRF,t−1 + ηt, (E.3)

where ηt is a vector of uncorrelated shocks, R is an invertible matrix, and ΠR = R−1Π.
We write the variance-covariance matrix of ηt as:

Ση = Eη′tηt, (E.4)

=

 σ(η1)2 0 0
0 σ(η2)2 0
0 0 σ(η3)2

 . (E.5)

There are many ways of writing the VAR(1) in the form (E.3). Following Sims
(1986), we pick a unique representation by requiring R−1 to be lower-diagonal with
ones along the diagonal. Having estimated Π and Σε, we obtain R, ΠR, and Ση as
follows:

1. Obtain the matrix CIRF as the lower-triangular Cholesky factorization such
that Σε = CIRFC

′
IRF (MATLAB: C=chol(Sigmae,’lower’))

28



2. Further decompose CIRF into a lower triangular matrix with unit coefficients
along the diagonal R and a diagonal matrix DIRF , i.e. CIRF = RDIRF , where
R has ones along the diagonal and DIRF is a diagonal matrix. (MATLAB:
D=diag(diag(C)); R = C ∗ inv(D))

3. We can then multiply (E.1) by R−1 to get

R−1YIRF,t = R−1ΠYIRF,t−1 +R−1εt. (E.6)

The variance-covariance matrix of ηt = R−1εt is diagonal with

E
[
R−1εt

(
R−1εt

)′]
, (E.7)

= R−1ΣεR
−1′ , (E.8)

= R−1CIRFC
′
IRFR

−1′ , (E.9)

= R−1RDIRFD
′
IRFR

′R−1′ , (E.10)

= DIRFD
′
IRF . (E.11)

We therefore define:

ηt = R−1εt, (E.12)

Ση = DIRFD
′
IRF , (E.13)

ΠR = R−1Π. (E.14)

We can now solve for impulse responses. For the output gap impulse responses
we start with a unit standard deviation shock to the output gap. We therefore look
at macroeconomic impulse responses, where the period 1 shock equals

η1 = [σ(η1), 0, 0]′ , (E.15)

and shocks in all other periods equal zero. Equivalently, we look at the impulse
response to the shock

ε1 = R[σ(η1), 0, 0]′, (E.16)

and εt = 0 ∀t > 1. The n response to a one standard deviation shock to the output
gap then is computed as:

Πn−1ε1, (E.17)

= Πn−1R [σ(η1), 0, 0]′ . (E.18)

Impulse responses to inflation and Federal Funds rate shocks are computed analo-
gously as Πn−1R[0, σ(η2), 0]′ and Πn−1R[0, 0, σ(η3)]′.
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E.2 Expressions for correlations with the output gap

The SMM estimation procedure matches the correlation between the 20-quarter aver-
age Federal Funds rate and the output gap. In the data, we compute this correlation
as

Ĉorrxi ≡ Ĉorr

(
1

20
(it + it+1 + ...+ it+19) , xt

)
, (E.19)

where t ranges from the first to the last quarter in either period 1 or period 2.
The empirical correlation of 5-year average inflation with the output gap is computed
analogously, with it, it+1, .., it+19 replaced by πt, πt+1, ...πt+19. The empirical inflation-
output gap correlation is computed as

Ĉorr (πt, xt) , (E.20)

where t ranges from the first to the last quarter in either period 1 or period 2.

The model correlation of the 5-year average Federal Funds rate with the output
gap is computed analytically according to:

Corrt−1

(
1

20
(it + it+1 + ...+ it+19) , xt

)
, (E.21)

=
QMΣu

(
e3 (I − P )−1 (I − P 20)Q+ 20e3

)′√
QMΣuQ′M

√(
e2 (I − P )−1 (I − P 20)Q+ 20e3

)
Σu

(
e3 (I − P )−1 (I − P 20)Q+ 20e3

)′ .
(E.22)

The model correlation of 5-year average inflation with the output gap equals:

Corrt−1

(
1

20
(πt + πt+1 + ...+ πt+19) , xt

)
, (E.23)

=
QMΣu

(
e2 (I − P )−1 (I − P 20)Q+ 20e3

)′√
QMΣuQ′M

√(
e2 (I − P )−1 (I − P 20)Q+ 20e3

)
Σu

(
e3 (I − P )−1 (I − P 20)Q+ 20e3

)′ .
(E.24)

The model correlation of one-quarter inflation with the output gap equals:

Corrt−1 (πt, xt) =
QMΣu (e2Q+ e3)′√

QMΣuQ′M
√

(e2Q+ e3) Σu (e2Q+ e3)′
(E.25)

E.3 Asset return loadings on impulse responses

We compute model asset return loadings on impulse responses as follows.
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1. We use the model to generate a simulated sample for xsimt , πsimt , isimt and bond

and stock return components xrsim,δt , xrsim,cf,δt , xrsim,rr,δt , xrsim,rp,δt , xrsim,$n,t ,

xrsim,cf,$n,t , xrsim,rr,$n,t , xrsim,rp,$n,t . The simulated sample has the same length as
our data.

2. We estimate the VAR(1) (E.1) on the simulated model data, giving simulated
VAR(1) residuals εsimt . We use the methodology in Section E.1 to obtain or-
thogonal innovations ηsimt =

[
ηsimx,t , η

sim
π,t , η

sim
i,t

]
.

3. We regress xrsim,δt , xrsim,cf,δt , xrsim,rr,δt , xrsim,rp,δt , xrsim,$n,t , xrsim,cf,$n,t , xrsim,rr,$n,t ,

xrsim,rp,$n,t onto ηsimx,t+1, ηsimπ,t , and ηsimi,t . We regress onto ηsimx,t+1 rather than ηsimx,t
to account for the fact that ηsimx,t+1 reflects news about xsimt , because Y sim

IRF,t =
[xsimt−1, π

sim
t , isimt ].

4. We standardize the estimated slope coefficients by the standard deviations of
ηsimx,t+1, ηsimπ,t , and ηsimi,t .

5. We report standarized slope coefficients averaged across 100 independent model
simulations

E.4 Confidence intervals and objective function

We use a bootstrap method to compute confidence intervals for the empirical impulse
responses shown in Figures 3 through 5 and for the variances of the impulse responses
used in the SMM estimation. Let Π and Σε denote the VAR(1) coefficient matrix and
the variance-covariance matrix of shocks from estimating (E.1) on actual data. We
then generate bootstrapped data from this VAR(1) by simulating Y boot

IRF,t of identical
sample length as the true data according to

Y boot
IRF,t = Π̂Y boot

IRF,t−1 + εboott , (E.26)

where εboott are drawn as iid normal with mean zero and variance-covariance Σε. On
the bootstrapped data, we then apply the methodology for IRFs described in Section
E.1. That is, we re-estimate (E.1) on the bootstrapped data and use the resulting
estimates to construct bootstrapped impulse response functions. We generate 1000
independent bootstrap samples. Figures 3 through 5 show confidence intervals, such
that 95% of the time the bootstrapped impulse responses are within the interval.

For our objective function, we define the empirical target moments as follows.
Ψ̂ is [52 × 1]. It includes 51 = 6 · 9 − 3 impulse responses and the 5-year average
Federal Funds rate-output gap correlation. We have 51 impulse response moments,
because we have nine impulse responses at one (shock period), two, four, 12, 20, and
40 quarters each. However, three of the shock period impulse responses are zero by
our choice of orthogonalization and we exclude them from the objective function.
The last element of Ψ̂−Ψ(param) is the square-root of the 20-quarter Federal Funds
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rate-output gap correlation in the model minus the data, defined as√∣∣∣Corrt−1 ((it + i+ t+ 1 + ...+ i19) , xt)− Ĉorr
(

1
20

(it + i+ t+ 1 + ...+ i19) , xt
)∣∣∣.

Let V̂ denote the bootstrapped variance-covariance matrix of Ψ̂boot − Ψ̂, where
the 51 first elements of Ψ̂boot − Ψ̂ are the difference between the bootstrapped im-
pulse response moments and the data impulse responses and the last element is√
Ĉorr

boot

xi − Ĉorrxi and Ĉorrxi and Ĉorr
boot

xi denote the 5-year average Federal Funds
rate-output gap correlation computed according to (E.19) in actual and bootstrapped
data. We then define the weighting matrix Ŵ for the SMM objective function as the
diagonal matrix with the inverse variances for the 51 impulse response moments and
200 along the diagonal:

Ŵ = diag(inv(V̂1,1), inv(V̂2,2), ..., inv(V̂51,51), 200). (E.27)

E.5 Grid search

We minimize the SMM objective function by grid search. Solving for the macroeco-
nomic dynamics once and simulating the macroeconomic impulse response functions
(but not solving for asset prices) takes about 1.2 seconds. So the reason that the
estimation is computationally intensive is that we have a high-dimensional parame-
ter space, combined with the need to simulate impulse responses to adjust for small
sample effects in plausibly short empirical samples. We are minimizing over 12 param-
eters, so we have a high-dimensional optimization problem, for which gradient-based
optimization methods do not work well. We solve the challenges posed by high-
dimensional optimization by a) dividing parameters into blocks b) using the Harvard
Odyssey computing cluster c) grid search along an appropriate grid.

We minimize Obj(params) using a two-step grid search. To reduce the dimen-
sionality of the grid search, we separate the parameters into those determining the
slope coefficients in the VAR(1) paramsslope = [pπi, pππ, pπi, pix, piπ, pii] and those de-
termining the shock variances and correlations
paramsshocks = [σπ, σi, σ∗, ρπi, ρπ∗, ρi∗]. The grid search first minimizes over paramsslope
while initializing the shock parameters at paramsvol = [0.1, 0.1, 0.1, 0, 0, 0]. This first
grid search step solves and simulates macroeconomic dynamics over a grid. The grid
for this first step consists of 10 equally-spaced points between −1 and 1 for every
parameter in paramsslope. In this first step, we thus solve and simulate the macroe-
conomic dynamics 106 times. We achieve this high number of model evaluations by
running up to 1000 model simulations in parallel on the Harvard Odyssey computing
cluster. In a second step, we minimize the objective function over paramsvol, while
holding constant paramsslope at the previously estimated values. We use a grid with
10 points for each of the 6 parameters in paramsslope. For the volatilities, we use
equal-spaced grids from 0.01% to 0.3% . For the correlations, we use equal-spaced
grids from −0.99 to 0.99.
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E.6 Standard errors and hypothesis tests

E.6.1 Standard errors

This Section provides details on the parameter standard errors in Table 1. Despite
our non-standard weighting matrix, we can compute standard errors using standard
methods, similarly to Bekaert and Engstrom (2017) and CEE. Under the usual con-
ditions, the asymptotic distribution of the parameter estimates ̂params around their
true values params is given by:(

̂params− params
)
∼ N

(
0, V̂params

)
, (E.28)

V̂params =
(
M̂−1

SEĤ
′
SEŴ V̂ Ŵ ĤSEM̂

−1
SE

)
(E.29)

Ŵ is the diagonal weighting matrix used in the SMM objective function. V̂ is the
variance-covariance matrix of empirical moments. Both V̂ and Ŵ are obtained as
described in Section E.4. The matrix ĤSE = ∇Ψ

(
̂params

)
is the Jacobian of the

model moments evaluated at the vector of point estimates, ̂params. Finally, M̂SE ≡
Ĥ ′SEŴ ĤSE.

We obtain the i’th column of ĤSE as the numerical derivative of the model mo-
ments with respect to parameter i. Specifically, we simulate moments while moving
parameter i by ±epsi from its point estimate, and dividing the difference by 2epsi.
We then compute ĤSE according to:

ĤSE =
[

Ψ( ̂params+e1ε)−Ψ( ̂params−e1eps1)
2eps1

, . . . ,
Ψ( ̂params+e12eps12)−Ψ( ̂params−e12eps12)

2eps12

]
.

(E.30)

The matrix ĤSE is [52× 12], because we have 52 moments and 12 parameters.

There are two practical challenges when computing standard errors. The first one
is that the 12×12 matrix M̂SE may be hard to invert if its eigenvalues have drastically
different orders of magnitude. We deal with this first challenge by scaling the standard
deviations by 400 before doing the standard errors calculation. The second challenge
is that our moments are simulated, so there is simulation noise around the true
Ψ
(
̂params± eiepsi

)
. We deal with this second challenge by choosing values for

epsi that are large enough that movements in model moments are not dominated
by simulation noise. We allow for different epsilons epsi for different parameters,
because parameters have different scales. Specifically, we set ε = 0.50 for the lag and
correlation parameters (which are in natural units) and ε = 0.10 for the standard
deviations of shocks (which are already scaled by 400 to make them of comparable
magnitude to the lag parameters).
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E.6.2 Hypothesis tests

Let ̂params1 and ̂params2 denote the parameter point estimates for periods 1 and
2. Let V̂params,1 and V̂params,2 denote the asymptotic variance-covariance matrices for
periods 1 and 2, as defined in equation (E.29).

Table 1 reports the results from testing whether parameter i is equal in periods 1
and 2. Under the null hypothesis that params1(i) = params2(i), we have that:

̂params2(i)− ̂params1(i) ∼ N
(

0, ei

(
Vparams,1 + V̂params,2

)
e′i

)
. (E.31)

The test statistic is:(
̂params2(i)− ̂params1(i)

) (
ei

(
V̂params,1 + V̂params,2

)
e′i

)−1 (
̂params2(i)− ̂params1(i)

)
∼ χ2

1.

(E.32)

We compute p-value for the test that params1(i) = params2(i) by plugging the test
statistic (E.32) into the CDF of a chi-squared distribution with 1 degree of freedom.

E.7 Kalman filter for Figure 1

In this section, we use subscript kal to denote parameters and processes specific to
the Kalman filter to distinguish them from variables with similar names elsewhere in
the paper. Let βt denote the bond beta estimated from daily returns over the past
quarter t. We model βt as an unobserved AR(1) component plus white measurement
noise. We denote the deviation of βt from its mean µkal by:

ykal,t = βt − µkal. (E.33)

We assume that ykal,t satisfies the plant and observation equations:

xkal,t = Akalxkal,t−1 + ukal,t, (E.34)

ykal,t = xkal,t + vkal,t, (E.35)

where ukal,t and vkal,t are mean zero, independent random variables with variances
σ2
kal,u and σ2

kal,v. The unobserved component xkal,t is the latent de-meaned beta of
nominal bonds, that we want to estimate.

We can re-write the system (E.34) and (E.35) as:

xkal,t = Akalxkal,t−1 + εkal,t, (E.36)

ykal,t = Ckalxkal,t−1 + ηkal,t, (E.37)
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where

Ckal = Akal, (E.38)

Nkal = V ar(εkal,t) = σ2
kal,u, (E.39)

Lkal = Cov(εkal,t, ηkal,t) = σ2
kal,u, (E.40)

Mkal = V ar(ηkal,t) = σ2
kal,u + σ2

kal,v. (E.41)

Let Wkal,t denote the information available up to time t from observing ..., βt−1, βt.
Suppose that conditional on Wkal,0 the initial state xkal,0 is distributed N(x̂kal,0, Vkal,0)
and the state and observations obey the recursions (E.36) through (E.37). Standard
Kalman filter results then imply that conditional on Wkal,t, the current state is dis-
tributedN(x̂kal,t, Vkal,t) and that the conditional mean and variance obey the updating
recursions:2

x̂kal,t = Akalx̂kal,t−1 +Hkal,t(ykal,t − Ckalx̂kal,t−1), (E.42)

Vkal,t = Nkal + AkalVkal,t−1A
′
kal

−(Lkal + AkalVkal,t−1C
′
kal) ·

(Mkal + CkalVkal,t−1C
′
kal)
−1(L′kal + CkalVkal,t−1A

′
kal),

(E.43)

Hkal,t = (Lkal + AkalVkal,t−1C
′
kal)(Mkal + CkalVkal,t−1C

′
kal)
−1.

(E.44)

The distribution of ykal,t conditional on the information available at time t − 1 is
normal with conditional mean:

E(ykal,t|Wkal,t−1) = Ckalx̂kal,t−1, (E.45)

and variance

V ar(ykal,t|Wkal,t−1) = Mkal + CkalVkal,t−1C
′
kal. (E.46)

The log-likelihood hence obeys the recursion:

LL(ykal,1, ykal,2, ..., ykal,t) = LL(ykal,1, ykal,2, ..., ykal,t−1)

−1

2
log(2π)− 1

2
log (Mkal + CkalVkal,t−1C

′
kal)

− (ykal,t − Ckalx̂kal,t−1)2

2(Mkal + CkalVkal,t−1C ′kal)
. (E.47)

We estimate the parameters µkal, Akal, σkal,u, σkal,v by maximizing the likelihood
function (E.47).

2We substitute into the Kalman filter updating equations from Richard Weber’s Optimization
and Control class notes available at http://www.statslab.cam.ac.uk/ rrw1/oc/index.html.
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We consider a 95% confidence interval for the unobserved bond beta xkal,t + µkal
conditional on Wkal,t:

CI(xkal,t|Wkal,t) =
[
x̂kal,t + µkal − 1.96

√
Vkal,t, x̂kal,t + µkal + 1.96

√
Vkal,t

]
.

(E.48)

The estimated parameters for the betas are as follows: µkal = 0.60, Akal = 0.96,
σkalmna,u = 0.04, σkal = 0.08. We run exactly the same Kalman filter for the quarter-
end bond-stock correlations of daily returns and obtain: µkal,corr = 0.08, Akal,corr =
0.95, σkal,corr,u = 0.10, σkal,corr,v = 0.17. These parameter estimates show that both
betas and correlations are estimated to have substantial persistence, but also a high
volatility of iid noise, so filtering is useful in filtering out the noise.
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